Chelation- and Nonchelation-Controlled Reductions of β -Dicarbonyl **Compounds to l,%-Diols with Three Chiral Centers**

Jose Barluenga,* Julio G. Resa, Bernard0 Olano, and Santos Fustero

Department of Organic Chemistry, Faculty of Chemistry, Oviedo, Spain

Received June 17, 1986

1,3-Dioh 5 with three chiral centers are easily obtained, as a diastereoisomer mixture, by reduction of 0-dicarbonyl compounds 4 with lithium aluminum hydrides. The diastereoisomer ratio depends largely on the solvent and the nature of the reducing agent. Thus, the isomers $56(6')$ and 5α are formed as the major compounds (de 74–98%) **if bulky aluminum hydrides or "AlH"/Lewis acids, respectively, are employed.**

In the last years, a great deal of attention has been paid to the diastereoselective synthesis of 1,2- and 1,3-oxygen disubstituted acyclic compounds since they form the basic skeleton of many widespread natural products, e.g. antibiotics, polyethers and polyoxo macrolides.¹

Among the procedures developed for the synthesis of 1,3-diols, the stereoselective directed aldol condensation followed by alkylation or reduction of the resulting β -hydroxycarbonyl compounds has proven to be highly valuable.² Thus, alkylation and reduction of β -hydroxycarbonyl derivatives with the aid of chelating agents has been recently reported by Reetz³ and Narasaka,⁴ respectively, to furnish stereoselectively 1,3-diols with two or three chiral centers.

Alternatively, 1,3-diols with two chiral centers have been prepared by reduction of $1,3$ -dicarbonyl derivatives;⁵ this well-known reaction has been applied to α -substituted β -keto esters^{1,6} and α , α -di-⁷ and α -unsubstituted⁸ 1,3-diketones. However, **as** far **as** we are aware, this method has not been extended to syntheses of 1,3-diols with three chiral centers. Moreover, the reduction process becomes highly influenced by the reducing agent and the substrate used.^{9,10} For instance, reduction of α -unsubstituted 1,3diketones, which largely exist as the enol tautomer, gives variable amounts (up 80-88%) of allylic and saturated alcohols as elimination products along with the expected diols.¹⁰

Other methods, e.g. addition of alkylboranes to oxiranes¹¹ and hydroboration of dienes,¹² have been of less interest due to the low stereoselectivity observed.

We have recently reported new stereoselective syntheses of 1,3-diamines 2^{13} and 1,3-amino alcohols 3^{14} by reduction

(1) Oishi, T.; Nakata, T. Acc. *Chem. Res.* **1984,17,338-344 and ref- erences cited therein.**

(2) (a) Heathcook, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1984; Vol. 3, Chapter 2. (b) Heathcook, C. H.; Kiyooka, S.; Blumenkopf, T. A. J. Org. Chem. 1984, 49, 4214.
(3) (a) Reetz, M. T.; **1985, 118, 3966.**

(4) Narasaka, K.; Pai, F. C. *Tetrahedron* **1984,40,2233 and referencea cited therein.**

(5) House, H. 0. *Modern Synthetic Reactions;* W. **A. Benjamin:**

Menlo Park, CA, 1972; Chapter 2. (6) (a) Nakata, T.; Oishi, T. *Tetrahedron Lett.* **1980,** *21,* **1641. (b)**

Soai, K.; Oyamada, H. Synthesis 1984, 605. (c) Brown, G. R.; Foubister,
A. J. J. Chem. Soc., Chem. Commun. 1985, 455.
(7) (a) Maier, G.; Roth, C.; Schmitt, R. K. Chem. Ber. 1985, 118, 704.
(b) Maier, G.; Schmitt, R. K.; Se

K. *Monatsh. Chem.* **1975,** *106(1),* **229.**

(9) Dreiding, A. S.; Hartman, J. A. J. Am. *Chem. SOC.* **1953, 75, 3723. (10) Frankeufeld, J. W.; Tyler, W. E.** *J. Org. Chem.* **1971,** *36,* **2110. (11) Pelter, A.; Bugden, G.; Rosser, R.** *Tetrahedron Lett.* **1985, 26, 5097.**

(12) Still, W. C.; Darst, K. P. *J. Am. Chem.* **SOC. 1980, 102, 7387. (13) (a) Barluenga, J.; Olano, B.; Fustero, S.** *J. Org. Chem.* **1983,48, 2255. (b) Barluenga, J.; Cuervo, H.; Olano, B.; Fustero, S.; Gotor,** V. *Synthesis,* **in press.**

^aOnly one enantiomer of the racemic pair is represented.

of the easy-to-make 3-amino-2-alkenimines $1^{15,16}$ (a and b, Scheme I).

Continuing our effort to the synthesis of $1,3$ -difunctionaliied compounds and having in mind that compounds $1 (R^3 \neq H)$ are easily hydrolyzed to dicarbonyl derivatives $4 (R^3 \neq H)$, which are isolated as the diketone tautomer¹⁶ (see Scheme I), we focused our attention on the preparation of 1,3-diols having three chiral centers $(c,$ Scheme I) starting with 1.

We report here the diastereoselective synthesis of 1,3 diols 5 by reduction of 1.3-dicarbonyl compounds 4 $(\mathbb{R}^3 \neq$ H) with LiAlH, (LAH) and its alkoxy derivative LiAlH- $(O-t-Bu)$ ₃ (TBH).

Results and Discussion

I. Reduction of 4 with LAH **and** TBH.17 The treatment of $4 \text{ (R}^3 \neq H)$ with LAH or TBH in different solvents for several hours led in nearly quantitative yields

⁽¹⁴⁾ Barluenga, J.; Olano, **B.; Fustero, S.** *J. Org. Chem.* **1985,50,4052.**

⁽¹⁵⁾ Hoberg, H.; Barluenga, 3. *Synthesis* **1970, 142. (16) Barluenga, J.; Jardbn,** J.; **Gotor,** V. *J. Org. Chem.* **1985,50, 802.**

⁽¹⁷⁾ Other metal complex hydrides such as NaBH₄, LiAlH(OMe)₃, and **NaAlH2(0CH2CH20CH.& as well as DIBAH gave poorer results in terms of chemical yields and stereoselectivity.**

 ${}^{\circ}R^2 = C_{\circ}H_{\circ}$. ${}^{\circ}Bv$ ¹³C and ¹H NMR (200 MHz) of the crude residue (estimated error $\leq \pm 2$). ${}^{\circ}$ Not detected by ¹H NMR (200 MHz).

Table II. 1.3-Diols 5 Obtained by Reduction of 4 with "AlH"/TiX.

 $^aR^2 = C_6H_5$ b By ¹³C and ¹H NMR (200 MHz) of the crude residue (estimated error $\leq \pm 2$). c Not detected by ¹H NMR (200 MHz).

to 1,3-diols 5 as a mixture of α , β , β' , and γ diastereoisomers (Scheme 11; Table I).

The diastereoisomer ratios were determined from the ¹H and ¹³C NMR spectral data of the crude reaction mixture.

As shown in Table I, the stereoselectivity of the reaction is markedly affected by the solvent and the reducing agent used, in contrast with the results given on similar reactions by other authors.' In spite of the low stereoselectivity found with LAH (entries 1-3, 7, 8, 10, 12, 13; Table I), the effect of the solvent is noted as a remarkable increasing of the β isomer in the series $CH_2Cl_2 < Et_2O < THF$ (entries 1-3, **7,** 8; Table I). Taking this into account, the use of bulky aluminum hydrides was attempted in order to improve the stereoselectivity of the reaction. In fact, treatment of 4 with TBH in THF¹⁸ resulted in the formation of the 1,3-diol $5\beta(\beta')$ as the major diastereoisomer (de 80-98%) (entries 6,9, 11, 15; Table I); the effects of temperature (entries 3-6, Table I) and substituents in **44** (entries 3, 8, 10, 13; Table I) were not relevant to the reduction selectivity.

The results shown above *can* be understood by assuming two differents models for the consecutive reduction of both carbonyl groups (Scheme 111). First, a cyclic model **⁶** accounts for the formation of *5a;* thus, inter- or intramolecular attack of the hydride from the less hindered side gives rise to the ketone alkoxide **7,** whose reduction follows the Narasaka's model,⁴ taking place by hydride attack from the *re* face (or from *si* face if $\mathbf{R}^4 = c \cdot \mathbf{C}_6 \mathbf{H}_{11}$) due to the steric requirements imposed by the α -axial substituent \mathbb{R}^3 .

On the other hand, if the initial carbonyl group reduction takes place on an open-chain model 8, the major diastereoisomer should be 9, according to Cram's rule;¹⁹ further hydride attack on the major conformer **9b** from

Participation of an open-chain model throughout the reduction course **as** well as hydride attack in **9b** from the *re* face becomes of much less importance because of the low yields of 5γ obtained in all the cases investigated.²¹

The high degree of stereoselectivity observed when TBH and THF are combined can be explained in terms of the higher solvation ability of TBH vs. substrate **4** in THF,

⁽¹⁸⁾ Hanbeustock, H.; Eliel, E. L. *J. Am. Chem. SOC.* **1962,84, 2363. (19)** Leitereg, **T. J.;** Cram, D. J. *J. Am. Chem. SOC.* **1968,** *90,* **4019.**

⁽²⁰⁾ Formation of $\frac{5}{6}(3')$ can be explained through boat conformation models (see ref 7b).
(21) Attempts to increase the proportion of isomer 5γ by using excess

of Lewis acid (e.g., BR₃-OEt₂, 2.2 mol equity), which should favor an open-chain model 8, failed in all the cases investigated. See: Reetz, M. T.; Kesseler, K. *J. Org. Chem.* **1985,** *50,* **5435.**

Table 111. 1,3-Diols 5 Isolated from the Crude Residue

^a Yield in isolated pure compound. ^b Not isolated. ^c Obtained in 95% purity **('H** NMR 200 **MHz).**

along with the steric effects associated with the bulky 0-t-Bu groups; use of solvents with leas coordination power such as Et_2O or $CH_2Cl_2^{18}$ results in a major participation of reductant-diketone chelate.

11. Reduction of 4 with "AlH"/TiCl₄. It is clear, from the above results, that favoring the intermediacy of a cyclic system of type **6** will result in **an** increase of diastereoisomer *5a.* Also, it is well-known that added chelating reagents ensure participation of a rigid cyclic transition state in this type of reaction; 3,7b among chelating agents, titanium derivatives, particularly TiCl₄, have been widely $emploved.³$

In fact, we found that using "AlH"/TiCl₄ as reducing agent and CH_2Cl_2 as solvent the stereoselectivity was completely reversed and **5a** was the major isomer in the crude mixture (de 70-9470) (Scheme 11; Table 11). From Table I1 one can note the following: (1) Running the reduction either in the presence of less acidic titanium compounds, e.g. Ti(OEt)43 (entry **51,** or in ethereal solvents, e.g. $Et₂O$ or THF (entries 1, 4, 10), results in lowering the stereoselectivity of the process. (2) Minor variations of stereoselectivities occur by using reducing agents with bulky substituents (entry **3)** or different reaction temperatures (entry 8).

The course of this reduction can be explained via the cyclic models **10** and **11,** as outlined in Scheme IV; the major isomer 5α is formed by addition of hydride to both carbonyl functions from the less hindered side. Alternatively, a reduction pathway through boat conformations according to Maier's model^{7b} would also account for the formation of **5a** (Scheme IV).

Last, it is noteworthy that the major isomers, 5α or $5\beta(\beta')$, are readily separated from the diastereoisomeric mixture by simply stirring in hexane-ether and purified by crystallization **or** distillation (see the Experimental Section and Table 111). The configurational assignment of **5** was ascertained by 'H and 13C NMR spectra of the isolated isomers, taking into account the existence of 1,3 diols as six-membered rings by forming intramolecular hydrogen bonds.²² Thus, $5a\beta$ exhibits in the ¹H NMR (200-MHz) spectrum two doublets at δ 4.54 (1 H, $J = 6.8$) Hz) and 4.88 (1 H, $J = 2.4$ Hz), which are assigned to R^2CH and R^4CH , respectively, while the spectrum of $5a\alpha$ shows only one doublet at δ 4.97 (2 H, $J = 2.8$ Hz) for the same hydrogen atoms. The corresponding carbon

atoms R^2CH < and R^4CH < appear in the ¹³C NMR spectrum at δ 73.99 and 77.41 for $5a\beta$ and at δ 80.54 for $5a\alpha$ ²² Therefore, the multiplicity of the signals and the coupling constants observed corroborate the proposed structures.

Conclusions

The reduction of α -monosubstituted 1,3-dicarbonyl compounds, which largely exist as the diketone tautomer, with aluminum complex hydrides yields 1,3-diols having three chiral centers with a high degree of stereoselectivity. The reaction proceeds in nearly quantitative yields, with neither elimination side products nor starting dione being observed. The stereoselectivity of the process is highly dependent on the nature of both the solvent and the reducing system used.

Finally, it seems to us the sequence $1 \rightarrow 4 \rightarrow 5$ to be an excellent method for the stereoselective synthesis of 1,3 diols with three chiral centers.

Experimental Section

General Methods. Melting points are uncorrected. Infrared spectra were recorded in a Nujol mixture on a Pye Unicam SP-1000 spectrophotometer. The 'H NMR spectra were determined on a Varian XL-200 spectrometer with internal tetramethylsilane as the reference. The 13C NMR spectra were determined on a Varian FT-80A set for performing off-resonance. Mass spectra were taken on a Hewlett-Packard 5930A spectrometer. Microanalyses were performed on a Perkin-Elmer Model 240.

Materials. @-Diketones 4 used as starting materials were prepared according to literature methods.16 Ether and THF were distilled from sodium benzophenone under argon prior to use. Methylene chloride was distilled from P_2O_5 under argon prior to use. LiAlH₄ was used as a solution in ether $(1.7 M)^{23}$ All other reagents were commercially available and were used **as** received.

General Preparative Procedure of 1,3-Diols 5. Method A. **Reduction of 4 with LiAlH₄.** To a solution of 4 (4 mmol) in anhydrous THF (20 mL) was added dropwise LiA1H4 (4 mmol). Evolution of hydrogen was observed during the addition. When the addition was complete, the solution was stirred at room temperature for 14 h and then treated with anhydrous MeOH. When the evolution of gas was complete, $2 N H_2SO_4$ was added and the mixture extracted with CH₂Cl₂; the organic layer was dried over sodium sulfate, filtered, and evaporated under reduced pressure. 1,3-Diols **5** were obtained as a mixture of diastereoisomers. Reactions yields and diastereoisomer ratios are listed in Table I.

Method B. Reduction of 4 **with LiAlH(O-t-Bu),.** A solution of 4 (4 mmol) in anhydrous THF (20 mL) was slowly added to $LiAlH(O-t-Bu)₃²⁴$ (16 mmol). Evolution of hydrogen was observed during the addition. The mixture was stirred for 14 h. The subsequent operations were the same as those for Method A. 1,3-Diols **5** were obtained as a mixture of diastereoisomers. Reaction yields and diastereoisomer ratios are shown in Table I.

Separation of *j3* **Diastereoisomers of 5a and 5b.** The crude product obtained by method B was suspended in hexane-ether (9:l). The slurry was filtered. The hexane-ether-insoluble solid, **56,** was recrystallized from hexane-chloroform (6:l). Melting points for isomer **58** are shown in Table 111.

Separation of Diastereoisomers 5d β and 5d β' . The crude product obtained by method B was suspended in hexane-ether (91). The slurry was filtered. The hexane-ether-insoluble solid, $5d\beta$, was recrystallized from hexane-chloroform $(6:1)$. From the filtrate, solvent was removed, and several treatments with hexane-ether led us to a $5d\beta'$ isomer enriched mixture. The melting point for isomer $5d\beta$ is given in Table III.

Method C. Reduction of 4 with LiAlH₄ in the Presence **of a Chelating Agent.** To a solution of **4 (4** mmol) in anhydrous $CH₂Cl₂$ (20 mL) was added a chelating agent (5 mmol; Table II) at -90 °C. The mixture was stirred at that temperature for $\frac{1}{2}$

^{~~} **(22)** Hoffmann, R. W.; Weidmann, U. Chem. Ber. **1985,** *218,* **3980.**

⁽²³⁾ Felkin, H. Bull. *SOC. Chim. Fr.* **1951, 347. (24)** Brown, H. **C.; Shoaf,** C. **J.** *J. Am. Chem.* **SOC. 1964, 86, 1079.**

h, and then LiAlH, (10 mmol) was added. When the addition was complete, the solution was stirred for 14 h at room temperature. The subsequent operations were the same **as those** from method A. 1,3-Diols **5** were obtained as a mixture of diastereoisomers. Reaction yields and diastereoisomer ratios are given in Table 11.

Separation of α **Diastereoisomers of 5a-5d.** The crude product obtained by method C was suspended in hexane-ether (91). The slurry was filtered. The hexane-ether-insoluble solid, **5a-ca** was recrystallized from hexane-chloroform (6:l). The isomer $5d\alpha$ was distilled from the crude product obtained by method C. Melting points for isomers **Sa-ca** are listed in Table 111.

2-Methyl-1,3-diphenyl-l,3-propanediol (5a). (lRfs,35)-5aa: IR (Nujol) 3560 (free), 3350 **(asym),** 1520,1410, 750, 710 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (d, 3 H, $J = 7.1$ Hz), 2.07 (m, 1 H), 3.15 (br, OH), 4.97 (d, 2 H, *J* = 2.8 Hz), 7.00-7.50 (m, 10 H); ¹³C NMR (CDCl₃) δ 143.26, 128.71-125.90, 80.54, 46.53, 4.58. Anal. Calcd for $C_{16}H_{18}O_2$: C, 79.33; H, 7.43. Found: C, 79.40; H, 7.41.

(lS,3S/lR,3R)-5a@: IR (Nujol) 3580 (free), 3250 (asym), 1490, 1410, 760, 720 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (d, 3 H, $J = 7.1$ Hz), 2.07 (m, 1 H), 3.15 (br, OH), 4.54 (d, 1 H, *J* = 6.8 Hz), 4.88 (d, 1 H, $J = 2.4$ Hz), 7.00-7.50 (m, 10 H); ¹³C NMR (CDCl₃) δ 143.49, 142.62,129.32-126.12, 77.41, 73.99,45.65,11.09; MS, *m/e* 242 (M+), 224, 118, 117, 77. Anal. Calcd for C₁₆H₁₈O₂: C, 79.33; H, 7.43. Found: C, 79.45; H, 7.45.

 $({1R,2r,3S})$ -5a γ ²⁵ ¹H NMR (CDCl₃) δ 0.18 (d, 3 H, *J* = 7.1 Hz), 2.07 (m, 1 H), 4.49 (d, 2 H, $J = 9.1$ Hz); ¹³C NMR (CDCl₃) 6 142.93, 81.66, 13.63.

2-Benzyl- 1,3-diphenyl- 1,3-propanediol (5b). (lR,2~,35)-5ba: IR (Nujol) 3530 (free), 3310 **(asym),** 1500,1400, $760,700 \text{ cm}^{-1}$; ¹H NMR (CDCl₃) δ 2.34 (m, 1 H), 2.68 (d, 2 H, *J* = 5.9 Hz), 3.15 (s, OH), 5.14 (d, 2 H, *J* = 3.1 Hz), 6.00-8.00 (m, 15 H); ¹³C NMR (CDCl₃) δ 143.56, 142.77, 127.62-124.16, 76.48, 54.56, 28.13. Anal. Calcd for $C_{22}H_{22}O_2$: C, 83.01; H, 6.91. Found: C, 82.90; H, 6.93.

 $(15,35/1R,3R)$ -5b β : IR (Nujol) 3570 (free), 3340 (asym), 1510, 1420, 770, 715 cm-'; 'H NMR (CDC13) 6 2.14 (m, 1 **H),** 2.50 (dd, 1 H, *J* = 15.6 Hz, *J* = 5.1 Hz), 2.84 (dd, 1 H, *J* = 15.6 Hz, *J* = 10.7 Hz), 3.25 (br, OH), 4.74 (d, 1 H, *J* = 5.1 Hz), 4.91 (d, 1 H, $J = 2.5$ Hz), 6.00-8.00 (m, 15 H); ¹³C NMR (CDCl₃) δ 143.56, 142.77, 142.56, 128.83-125.35,73.71, 72.36,53.36,30.00; MS, *mje* 318 (M⁺), 300, 282, 194, 179, 91. Anal. Calcd for C₂₂H₂₂O₂: C, 83.01; H, 6.91. Found: C, 83.19; H, 6.95.

 $(1R, 2r, 3S)$ -5b γ ²⁵ ¹H NMR (CDCl₃) δ 4.22 (d, 2 H, *J* = 7.0 Hz).

106565-27-9; **(&)-sap',** 106565-28-0; **(*)-5dy,** 106565-29-1. *(25)* Characteristic signals taken from the crude mixture. Other signals are missing because of overlaping.

3-Cyclohexyl-2-methyl-1-phenyl-1.3-propanediol (5c). $(1S, 2R, 3S/1R, 2S, 3R)$ -5ca: IR (Nujol) 3540 (free), 3320 (asym), 1540, 1440, 760, 720 cm⁻¹; ¹H NMR (CDCl₃) δ 0.68 (d, 3 H, $J =$ 8.0 Hz), 1.00-2.00 (m, 12 H), 3.12 (br, OH), 3.48 (dd, 1 H, *J* = 8.8 Hz, *J* = 2.0 Hz), 3.92 (br, OH), 4.95 (d, 1 H, *J* = 2.6 Hz), 7.00-7.50 (br s, **5** H); 13C NMR (CDCl,) 6 143.84, 128.38, 127.14, 126.13, 82.29, 79.03, 41.17, 40.66, 38.15, 29.11, 26.67, 26.16, 4.68. Anal. Calcd for $C_{16}H_{24}O_2$: C, 77.41; H, 9.67. Found: C, 77.52; H, 9.59.

H, *J* = 8.6 Hz), 1.00-2.00 (m, 12 H), 3.36 (dd, 1 H, *J* = 8.8 Hz, *J* = 2.0 Hz), 3.8 (br, OH), 4.66 (d, 1 H, *J* = 7.5 Hz), 7.00-7.50 (br s, 5 H); ¹³C NMR (CDCl₃) δ 145.35, 129.31, 128.51, 127.36, 78.98, 76.17, 11.63. $(1R.2R.3S/1S.2S.3R)$ -5c β ²⁵ ¹H NMR (CDCl₂) δ 0.86 (d, 3)

3 H, $J = 8.0$ Hz), 1.00–2.00 (m, 12 H), 3.24 (dd, 1 H, $J = 6.6$ Hz, *J* = 5.5 Hz), 5.04 (d, 1 H, *J* = 2.2 Hz), 7.00-7.50 (br s, **5** H); 13C NMR (CDCl₃) *δ* 143.78, 129.07, 128.10, 127.16, 80.82, 74.95, 12.14. $(1S, 2R, 3R/1R, 2S, 3S)$ -5c β ':²⁵ ¹H NMR (CDCl₃) δ 0.68 (d, $(1S, 2S, 3S/1R, 2R, 3R) - 5c\gamma^{25}$ ¹H NMR (CDCl₃) δ 0.38 (d,

 $3 H, J = 8.0 Hz$, 1.00-2.00 (m, 12 H), 4.40 (d, 1 H, $J = 8.8 Hz$).

2-Methyl-3-phenyl-l-p-tolyl-1,3-propanediol (5d). *(lR,2S,3S/lS,2R,3R)-5da:* IR (Nujol) 3550 (free), 3315 **(asym),** 1560, 1390, 800 cm⁻¹; ¹H NMR (CDCl₃) δ 0.66 (d, 3 H, $J = 7.1$ Hz), 2.09 (m, 1 H), 2.38 (s, 3 H), 3.25 (br, OH), 5.00 (d, 1 H, *J* = 2.8 Hz), 5.01 (d, 1 H, *J* = 3.0 Hz), 7.00-7.50 (m, 9 H); 13C NMR 4.64. Anal. Calcd for $C_{17}H_{20}O_2$: C, 79.68; H, 7.81. Found: C, 79.75; H, 7.75. (CDC13) 6 **143.47,140.47,135.62,129.12-125.62,** 77.21,46.48,21.06,

(lR,25,3R/lS,2R,35)-5dB: IR (Nujol) 3560 (free), 3300 (asym), 1530, 1400, 800 cm⁻¹; ¹H NMR (CDCl₃) δ 0.65 (d, 3 H, *J* = 7.0 Hz), 2.09 (m, 1 H), 2.33 *(8,* 3 H), 3.21 (s, OH), 4.65 (d, 1 H, $J = 6.8$ Hz), 4.87 (d, 1 H, $J = 2.2$ Hz), 7.00–7.50 (m, 9 H); ¹³C 21.06, 11.21; MS, *m/e* 256 (M'), 238, 118, 91, 77. Anal. Calcd for C₁₇H₂₀O₂: C, 79.68; H, 7.81. Found: C, 79.82; H, 7.76. NMR (CDCl₃) δ 143.70, 139.71, 135.48, 129.12-125.62, 77.05, 45.71,

 $(1\overline{S}, 2\overline{S}, 3\overline{S}/1\mathbb{R}, 2\mathbb{R}, 3\mathbb{R})$ -5d β [']: ¹H and ¹³C NMR data calculated from an enriched mixture $(\beta:\beta' = 5.95)$; ¹H NMR (CDCl₃) δ 0.65 (d, 3 H, $J = 7.1$ Hz), 2.09 (m, 1 H), 2.31 (s, 3 H), 3.92 (s, OH), 4.54 (d, 1 H, *J* = 6.9 Hz), 4.92 (d, 1 H, *J* = 2.0 Hz), 7.00-7.50 (m, 73.64, 45.71, 21.06, 11.06. 9 H); ¹³C NMR (CDCl₃) δ 142.86, 140.71, 136.12, 129.12-125.62,

 $(1R, 2R, 3S/1S, 2S, 3R)$ -5d γ :²⁵ ¹H NMR (CDCl₃) δ 0.21 (d, 3 H, *J* = 7.1 Hz); ¹³C NMR (CDCl₃) δ 140.42, 137.23, 80.51, 13.76.

Registry No. 4a, 1846-29-3; **4b,** 28918-09-4; **(*)-4c,** 106471- 19-6; (±)-4d, 106471-20-9; 5aα, 106471-21-0; (±)-5aβ, 106565-20-2; $5a\gamma$, $106565-21-3$; $5b\alpha$, $106471-22-1$; (\pm) - $5b\beta$, $106565-22-4$; $5b\gamma$, 106565-23-5; (±)-5cα, 106471-23-2; (±)-5cβ, 106565-24-6; (±)-5cβ', 106565-25-7; **(±)-5c** γ , 106565-26-8; **(±)-5d** α , 106471-24-3; **(±)-5d** β ,